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TABLE I 

PO b n P(Y, /n  2 0) Equation (9) exP(c(eo)n) 

0.1 0.1 5 
25 
50 

0.3 0.2 25 
50 
100 

0.01 0.005 4 
8 
16 

2.86 x lo-’ 1.41 x lo-’ 
1.26 x 10-7 4.59 x 10-8 
4.33 x 10-14 4.62 x 10-14 
7.52 x 10-3 6.63 x 10-3 
2.11 x 10-4 2.65 x 10-4 
1.06 x 1.21 x 10-6 
3.46 x 10-4 6.38 x 10-4 
2.64 x 1 0 - ~  3.54 x 10-7 
2.68 x 10-13 3.08 x 10-13 

7.78 x lo-’ 
2.84 x lop6 

1.13 x lo-’ 
1.28 x lo-’ 

8.08 x 10-l2 

1.64 x 10-4 
1.57 x 10-3 
2.46 x lop6 
6.05 x 10-l’ 

For a numerical example, suppose that X ,  = f l  with 
P ( X ,  = +1) = PO - b$ with PO < 1/2 and b 5 PO, and 9 is 
a uniform random variable on [0,1]. After a little work it can be 
shown that 

[ P p o ( k + l , n -  k + l ) - ~ p o - - b ( k + l r n - k + l ) ] ,  

where P z ( a , b )  is the incomplete beta function. This for- 
mula can be numerically evaluated using the BETDF sub- 
routine from the IMSL library. We also find that 190 = 

and ~ ( 8 , )  = b ( l  - 2p0)/[2po(l -PO)]. Table I compares some 
numerical values of the exact value P ( Y n / n  2 0), the asymptotically 
sharp approximation given in (9), and the crude exponential 
approximation exp(c(Oo)n). A similar comparison is carried out in 
the i.i.d. setting in ([7, pp. 129-1311). 

A practical situation where conditional i.i.d. sums arise is in the 
analysis of the correlator receiver for direct sequence spread spec- 
trum, multiple access communications systems. In this application, 
the random phases and timing delays of interfering spread spectrum 
signals play the role of the “nuisance variable” 9. A more detailed 
large deviations analysis of this receiver is given in [ l l ] .  

f log((1 -Po)/Po), 4 8 0 )  = l O K ( 2 ~ E z i T 2 )  ,a2 = 1 

IV. DISCUSSION 
We note that finding the asymptotics of M,(B0) can in of itself 

be a nontrivial problem. Our philosophy has been to assume that 
knowledge of the moment generating function sequence is complete. 
In the setting of the first example and in more general cases of 
the third, this can be a nontrivial task, even though the logarithmic 
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The Asymptotic Risk in a Signal Parameter 
Estimation Problem 

Lawrence D. Brown and Richard C. Liu 

Abstract-In estimating the unknown location of a rectangular signal 
observed with white noise, the asymptotic risks of three important 
estimators are compared under L1/L2 losses. A different numerical 
scheme is used to improve the accuracy of Ibragimov/Hasminskii’s result, 
which also leads to further information and numerical comparisons about 
the problem. 

Index Terms- Rectangular signal, Bayes/minimax risks, squared/ 
absolute error losses, MLE. 

I. INTRODUCTION 

Consider an observed signal of the form 
behavior is known. 

d r ( t )  = ~ ( t  - 8)dt + adB( t ) ,  t E (0, T + l), (1) 
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where B ( . )  is Brownian motion, 8 E ( 0 , T )  is an unknown shift 
parameter, and s is the rectangular signal with S ( T )  = X[o,l~ (7). The 
objective is to estimate 8 under normalized squared error loss, Lz = 
~ - ~ ( d  - O ) ’ ,  or under normalized absolute loss, LI = a-’ld - 81. 
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Of interest here is precise evaluation of the asymptotic minimax risk 
as U + 0. This is asymptotically the same as the Bayes risk for a 
uniform prior on [O, TI. Some comparisons will be made between this 
minimax risk and the risk of some natural nonoptimal estimators. 

This problem was analyzed in Ibragimov and Hasminskii [3, ch. 71. 
Let MZ+, denote the minimax risk under L t .  (Throughout T will be 
assumed fixed and known.) It is claimed in [3, p. 34.51 that 

lim M z , ~  rz (4.875 f 0.125). (2) a-0 

This claim was based on asymptotic theory followed by numerical 
computations including a Monte Carlo simulation. We will provide a 
more precise evaluation for this limit. Our analysis begins somewhat 
differently from that in [3] and culminates in a somewhat different 
Monte Carlo simulation. We find 

MZ = lim A W ~ , a  rz 4.762 f 0.015, (3) C7-0 

which, of course, agrees with (2). (The error term here is the Monte 
Carlo estimate for the standard deviation of the simulation risk. It 
ignores the possible bias of this simulated risk. This bias will be 
discussed later.) [3] did not consider the loss L1 in this context. We 
find 

M I  = lim  MI,^ rz 1.383 f 0.0018. (4) CT-0 

(The analysis in [3, ch. 71 also shows how the same idea can be 
directly applied when s is any signal form having a finite number 
of discontinuities.) 

The theoretical basis for our evaluations is explained in Section 11. 
Section 111 reports numerical results which supplement (3) and (4). It 
contains a comparison of the asymptotic risks under both L I  and LZ 
of three different estimators: the maximum likelihood estimate, the 
posterior median (which is minimax for L1) and the posterior mean 
(which is minimax for Lz).  

11. ASYMFTOTIC THEORY 
When studying asymptotic properties, it is sufficient to fix T at 

Consider a reparametrization in which 
any convenient value. Hence, let T = 1 in what follows. 

For fixed U ,  let 

Zt =a-z 1 [s(v  - 1 /2  - &/2) - s (v  

t E (-l/U2,1/2). 

Note that (2,) is the Gaussian process with 

E 4 ( Z t )  = (141 - Id - t1)/2 = P4(t), 

var4(Zt) = Itl, 

cov4 (Zt I 2,) = if sign(t) = sign(w) and Itl, [ w [  > 0, 

otherwise. 

(5) 
Consequently, Zt can be represented as 

z t = {  V-t + P 4 ( t ) ,  l/@ < t < 0, 

wt + P 4 ( t ) ,  l /a2 > t 2 0, ' 

where {Wt} and {V,} are independent copies of standard Brownian 
motion on [0, l / a 2 ) .  Note that the range of t depends on o2 
and increases to (-CO, CO), but the distribution of (2,) does not 
otherwise depend on t .  

1 993 255 

Let & , Q z  E (-l /u2,  l / u z ) .  Think of the statistical problem of 
choosing whether Q = Q1 or 4 2  after observing dr ( . )  given by (1) 
with R = u2Q1/2 + 1/2 or u242/2 + 1/2. It is easy to check, and 
well known, that Zbl - Z42 is a (minimal) sufficient statistic for 
the problem. Consequently, (2,) is pairwise sufficient for any pair 
$1 ,  $2.  It follows that {Z , }  is also sufficient for the original statistical 
problem having Q E (-l/Qz, l/@'); see [l] .  

Estimation of 0 by d under loss L, is equivalent to estimation of Q 
by 6 = 2(d- 1/2) /u2 under the loss L: = 15 - $11/2'. In summary, 
the problem of estimating R under loss L,  after observation of dr (.) 
is equivalent to that of estimating $ under loss L: after observation 

It is now clear that the asymptotic form of the original signal pa- 
rameter estimation problem is equivalent to the problem of observing 
(2,) f o r t  E (-03,m) with unknown parameter Q E (-co,co). A 
local version of this asymptotic equivalence was already established 
by a different method in [3]. The explicit construction enables one 
to draw certain conclusions about the nonasymptotic problem that do 
not logically follow from the local asymptotic equivalence theory in 
[3]. For example, the minimax risk under the losses L1 or L2 for the 
problem of estimating 8 increases as U decreases to 0, and its limit is 
the global minimax value for  the problem of estimating 4 E (-03, CO) 

based on observation of Zt. 
Let f4 ( {  zt }) denote the density of { Zt  } under 4 E (-CO, 03) with 

respect to the distribution of (2,) under 4 = 0. It can be checked 
that f4({zt}) = exp(z4). Note that the distribution of Zt - 2 4  under 
parameter 4 is independent of 4. Hence, the problem of estimating 
Q under loss L1 is location invariant. (A maximal invariant in the 
sample space is { ( z t  - z ~ )  : t E (-03, m)} where 6 is the maximum 
likelihood estimation-i.e., z~ = max zt .) It follows that minimax 
estimator is the Pitman estimator. For i = 2 this is given by 

of Z,,t E (-1/a2, l/UZ). 

W 

J 4exp(z4)d4J 
(6) 

--m 

6 1 ( z t )  = 7 exp(z4) ci4 

(see also [3, formula (2.17), p. 338]), which is the posterior mean 
under a uniform prior. (See, e.g., [2, p. 4051). 

For i = 1, the estimator is the posterior median under the prior, 
i.e., 

--m 

(7) 
-cc 61 

These estimators will have constant risk since they are invariant. 
Hence, the minimax value is 

It is apparently impossible to analytically obtain the value in (8). 
Numerical methods seem to be needed. 

In order to evaluate (8) in the case i = 2, Ibragimov and 
Hasminskii adopted a sophisticated scheme which represents the 
numerator and the denominator of (6) as limiting solutions to a 
system of stochastic differential equations. They then used a Monte 
Carlo simulation to estimate the joint distribution of these limiting 
values and hence to estimate (8). We take a different approach 
which is both more elementary and more precise. (See Remark 1 
concerning precision.) Furthermore, it is easy to adapt our approach 
to accommodate other estimators, such as 61. Our method begins by 
approximating the integrals in (6) by finite Riemann sums. These 
sums are random, and so their distribution is then simulated. Because 
the quantity of interest, 5 2 ,  involves a ratio of terms whose joint 
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distribution is unknown, we elected to use a relatively straightforward 
simulation scheme rather than risk introducing further bias. 

Consider 62: The integrals in (6) can be approximated by the 
trapezoid rule. Since zo = 0 we get 

00 m 

( j A ) e x p ( Z ~ A )  - (jA)exP(z-,A) 
3 = 1  3=l 

62 (a )  = CO m E 62,A(zt). 
+ exp(z.?A) + exp(z-JA) 

3=l 3 = l  

(9) 
A further claim can be made. & , A  is the formal Bayes rule relative 

to the uniform prior on the points C$ = j A , j  = 0, f l ,  f 2 , .  . .. As 
such, it has constant risk and is minimax when the parameter space 
is restricted in this way. The minimax risk for a restricted parameter 
space is at most that of the unrestricted space: Hence, 

2-’Eo(6;,~) 5 2-2Eo(6z(Zt)) = Mz. (10) 

It remains to evaluate the left hand code of (10) by numerical 
methods. To this end the infinite sums in (9) must be approximated 
by finite sums. Recall that Zt = W,, for t 2 0, and Zt = V-,, for 
t 5 0, as noted after (5). So for large k 

where 
k 

j=1 .?=1 

k k 

D2,A(k) = c e X P ( v - , A ) ,  N z , A ( ~ )  = cj . exp(V-,a), 

and the pair ( D z , ~ ( k ) , N z , ~ ( k ) )  is independent of ( D I , A ( ~ ) ,  
N i , ~ ( k ) )  and has the same distribution. Finally, note that 

3 = l  J=1 

W(j+l)A = WjA + U, ,  j = o,I,...,k, (12.1) 

where WO = 0, and U,  - N ( - A / 2 , A )  independently of W,A. 
Similarly, 

V-(j+l)A = V-jA + u’j, j = 0, I , ,  . . ’ , k (12.2) 

where VO = 0, and U: N N ( - A / 2 , A )  is independent of V-,A. 
This enables a convenient iterative Monte Carlo calculation of D 
and N via the scheme 

Dt,A(o) = 0, Nt,A(O) = 0, L,,A(O) = 1; 

L , A ( ~  + 1)  = exp(U,+l). L , A ( ~ ) ;  
Dt,A(j + 1) = Dt,A(j) + Lz,A(j + 1); (13) 

Nt,A(j + 1) = N z , A ( j ) + ( j  + 1).Lt,A(j + I ) ,  j = 0, 1,. ”, k .  

Numerical results are described in the following section. 
Now Consider 61: From (8) and (13), it can be seen that 61 is 

well approximated by 6 1 , ~ ( k )  = A m  when m depends on A, k ,  and 
{U2} and is determined by the following procedure: 

IF IDZ,A(k) - D l , A ( k ) (  5 1, 
THEN m = 0. 

IF Dl,a(k) - Dz,a(k) > 1, 

THEN m < 0 AND 

(14) 

As in (lo), it is the case here that 2 - 1 E 0 ( 6 1 , ~ )  5 M I ,  and the two 
are approximately equal when A is small. 

Remark 1: The algorithm described in (11) and (13) for approx- 
imating A& is different from that used in [3], but a comparison is 
possible. Although the motivation and the derivation are different 
from ours, it appears that the numerical scheme adopted there is 
virtually equivalent to that which would result from using (11) and 
(13) with exp(UJ) replaced by 1 + C;. Thus, our scheme should 
be slightly more precise for a given A, but either scheme should 
converge to M 2  as A + 0 and k + m. 

Remark 2: There are two sources of bias in the preceding simu- 
lation schemes for estimating A 4 1  and M2. Consider, for example, 
M z .  The first source is the approximation (9). The Riemann sums in 
the numerator and denominator are each negatively biased estimators 
of the respective integrals in (6), and as noted in (10) their ratio is 
also a negatively biased estimate of M 2 .  It can be shown via the 
reasoning leading to (10) that the magnitude of this bias is less than 
3A2 and hence can easily be made quite small. The second source 
of bias is the truncation, implicit in ( l l ) ,  of the infinite sums in (9) 
to be finite sums over 1 5 j 5 k. The magnitude of this bias is 
much harder to estimate since E(exp(tt))  = 1 for every t so that 
E(ZEk++, exp(zt)) = 33, etc. Our only substantial evidence that 
this bias is small is derived from the numerical results in Section 111. 
In Table 11, doubling k affects the simulation estimate by at most 1% 
of its value and usually by much less. 

Another estimator of interest is the maximum likelihood estimator 
(MLE). In the original problem (1) this can easily be seen to be 
the value ê  which maximizes J s ( t  - @)dr( t ) .  In the equivalent 
formulation, (5), the MLE is the value I$ that maximizes 24. The 
L; risk of 4 is found in [3] to be (see [4]) 

Their results also yield 

(16) 

Equation VII.3.11 of [3] establishes that 

<(A)  = 1 exp(-Xt)P(ljJ > t ) d t  
30 

0 

= 16(1 + (1 + 8X)’/z)-2 

- 8[ (1 + (1 + 8X)’”) (3 + (1 + 8X)1/2)]-1. 

SO E L1 4 = ((0)/2 = 1.5.) ( ’ ( ’ 7) 
Remark 3: [3] shows that when properly normalized the problem 

described in (5)  is the asymptotic local limit for any signal parameter 
estimation problem of the form (1) in which s(.) is a known 
signal having compact support and possessing a finite number of 
discontinuities. Hence, the numerical results reported in Table I also 
apply in such cases. It should be emphasized that the results obtained 
in this generality concem only local asymptotic properties. They do 
not directly yield statements about the limiting global minimax risk 
for rectangular s, nor do they yield the stronger statement that the 
normalized minimax risk for given U and T = 1 is bounded above 
by its asymptotic value. 
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vol. 13, pp. 652-657, 1968. 
TABLE I1 

RISKS UNDER L1 AND Lz 

A Estimator kA L1 Est. Risk f S.D. L2 Est. Risk f S.D. 

b2 50 1.4193f0.0016 
0.5 25 1.4202 f 0.0016 

61 50 1.3124f0.0019 
25 1.3133 f 0.0019 
50 1.4403 f 0.0016 

62 25 1.4426f0.0016 
50 1.3651 f 0.0018 
25 1.3670 f 0.0018 
50 1.4456 f 0.0016 

62 25 1.4474f0.0016 
50 1.3815 f 0.0018 

61 25 1.3827f0.0018 
50 1.4446 f 0.0016 

62 25 1.4475 f0.0016 
0.01 50 1.3827 f 0.0018 

61 25 1.3859f0.0018 

0.25 

0.1 

4.7056 f 0.0148 
4.7242 f 0.0150 
5.2444 f 0.0186 
5.2700 f 0.0190 
4.7746 f 0.0150 
4.7906 f 0.0152 
5.2271 f 0.0188 
5.2331 f 0.0188 
4.7918 f 0.0151 
4.7978 f 0.0151 
5.2065 f 0.0189 
5.1994 f 0.0187 
4.7622 f 0.0147 
4.7965 f 0.0148 
5.1601 f 0.0183 
5.2023 f 0.0185 

A Note on Rearrangements, Spectral Concentration, and 
the Zero-Order Prolate Spheroidal Wavefunction 

David L. Donoho and Philip B. Stark 

Abstract-If the measure of the support of a function f is small, its 
symmetric decreasing rearrangement f” is more nearly bandlimited to 
low frequencies than f, while their norms are equal. An immediate corol- 
lary is that the time-limited zero-order prolate spheroidal wavefunction is 
the extremal function for a new optimization problem involving time- and 
bandlimiting. The result has an application in exploration seismology. 

Index Terms-Symmetric decreasing rearrangement, uncertainty prin- 
ciple, smoothing, sparsity constraints, prolate spheroidal wavefunctions. 

I. INTRODUCTION 

111. NUMERICAL RESULTS A. The Question 
The L1 and L2 risks of and 52 were computed according to 

the simulation scheme described in Section 11. These risks are given 
in Table I, along with the values of k and A, which were used. 
Each entry involved lo6 iterations of the entire scheme. The standard 
errors shown are the square roots of the conventional unbiased 
estimators of variance obtained in the simulation trials. (We do not 
have any satisfactory theoretical results concerning the precision of 
the simulated risks or of their estimated standard deviations). The 
risk of the MLE, 0 is given in (16), (17). 

Note that the risks of 51 and 62 are rather similar, and for squared 
error loss both are much better than the MLE. 

In order to ascertain the effect of altering A and I C ,  and to decide 
on apparently satisfactory values for use in Table I, several other 
simulations were conducted. A few of these are reported in Table 11. 
The entries labeled S.D. in the 4th and 5th columns of Table I1 are 
the estimated standard deviations. As before, each entry of the table 
involved lo6 iterations. 

Let f and f denote a function and its Fourier transform, re- 
spectively, and measure the concentration in the low frequencies 
[ -W/2,  w/21 by 

Here is a new extremal property of the zero-order prolate spheroidal 
wavefunction 40. Let the time-bandwidth product WT 5 415. 
Among all functions f of limited support T (meas(supp(f)) 5 
T), ew(f)  is maximized by a function supported on the interval 
IT = [ -T/2 ,T/2]  and 60 is the restriction 40 = 40 . 1~ of &I to 
that interval: 

(1.1) 
meas(supp f ) < T  

In short, io is the most nearly bandlimited function of all functions 
supported on set of measure 5 T .  
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